On Measure of Sum Sets III

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measure zero sets with non - measurable sum

For any C ⊆ R there is a subset A ⊆ C such that A + A has inner measure zero and outer measure the same as C + C. Also, there is a subset A of the Cantor middle third set such that A+A is Bernstein in [0, 2]. On the other hand there is a perfect set C such that C + C is an interval I and there is no subset A ⊆ C with A + A Bernstein in I.

متن کامل

Sum of Cantor Sets: Self-similarity and Measure

In this note it is shown that the sum of two homogeneous Cantor sets is often a uniformly contracting self-similar set and it is given a sufficient condition for such a set to be of Lebesgue measure zero (in fact, of Hausdorff dimension less than one and positive Hausdorff measure at this dimension). 1. Definitions and results The study of the arithmetic difference (sum) of two Cantor sets has ...

متن کامل

On permutation sum sets

A permutation sum (resp. difference) set on a group G is a set F of bijections from G to G such that fg (resp. f−1g) is again a bijection for all f, g ∈ F (resp. f, g ∈ F with f 6= g ∈ S), where (fg)(x) := f(x)g(x) for all x ∈ G, etc. The maximum size d(G) of a permutation difference set has been well studied, with many connections drawn between such sets and combinatorial objects such as famil...

متن کامل

Measure zero sets whose algebraic sum is non - measurable

In this note we will show that for every natural number n > 0 there exists an S ⊂ [0, 1] such that its n-th algebraic sum nS = S + · · ·+ S is a nowhere dense measure zero set, but its n+1-st algebraic sum nS+S is neither measurable nor it has the Baire property. In addition, the set S will be also a Hamel base, that is, a linear base of R over Q. We use the standard notation as in [2]. Thus sy...

متن کامل

The Algebraic Sum of Sets of Real Numbers with Strong Measure Zero Sets

We prove the following theorems: 1. If X has strong measure zero and if Y has strong first category, then their algebraic sum has property s0. 2. If X has Hurewicz’s covering property, then it has strong measure zero if, and only if, its algebraic sum with any first category set is a first category set. 3. If X has strong measure zero and Hurewicz’s covering property then its algebraic sum with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society

سال: 1964

ISSN: 0013-0915,1464-3839

DOI: 10.1017/s0013091500025918